Exploring Demographics in Metropolitan Sustainability: San Antonio, Texas

Bill Barker, AICP

2012 Applied Demography Conference
San Antonio, Texas
January 10, 2012
Outline

- How is “sustainability” defined and measured?
- What is the impact of population dynamics on sustainability?
- Can insights from demographics help increase sustainability in the San Antonio region?
Sustainability

- Brundtland definition:
 - “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”

 Dr. Gro Harlem Brundtland, Former Prime Minister of Norway

- Intergenerational “golden rule”
 - “Sustainability applies the Golden Rule across generations.”

- Executive Order of the President
 - “...to create and maintain conditions, under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic and other requirements of present and future generations.”

 Agricultural Economist Dr. John Ikerd

 President Barack Obama
Weak and Strong Sustainability

For example, see Michael Getzner, “Weak and strong sustainability indicators and regional environmental resources”, *Environmental Management and Health*, 1999
“Four decades into talks and negotiations over ‘sustainable development’ as a planetary aim, and there still remain two key challenges in moving sustainable development from concept to action. One, the broad range of interpretations of the term and two, somewhat connected to the first, is the lack of reliable tools of measurement that can provide an indication if we are moving in the right direction in achieving sustainability. “

Source: Saunders, Caroline M.; Kaye-Blake, William; and Campbell, Rachel, “Capital Based Sustainability Indicators as a Possible Way for Measuring Agricultural Sustainability”, March 29, 2010
Focus on a Few Basics

- Water
- Energy
- Environmental degradation
- Equity
Interaction of Environmental Impact, Population, Affluence and Technology

- Impacts on the environment
 \[I = P \times A \times T \]
 Where:
 - \(I \) = environmental impact
 - \(P \) = population size
 - \(A \) = affluence (or consumption)
 - \(T \) = technology

- Impacts on the population
 \[P = f_n (A,T,E) \]
 Where: \(E \) = environmental carrying capacity
 - Demographic transition
 - Demographic-economic paradox/Kuznets Curve
 - Malthus’ Principle of Population
Same Technology, Very Different Outcomes

- Annual energy use
- New Las Vegas single family houses with identical energy efficiency
- Household consumption varies by over a factor of five

Source: National Renewable Energy Laboratory
What Explains Variation?

- Normal random variability
- But, also demographics, such as:
 - Household size
 - Income
 - Age of household members
 - Stage of household life cycle
 - Lifestyle
 - Educational attainment – inconclusive
 - Gender - inconclusive
- And, then, motivational factors, like:
 - Attitudes
 - Beliefs
 - Information intervention

Stephanie Grantham, *LITERATURE REVIEW Household energy consumption, conservation & efficiency*, Alice Solar City, 2010
Total Household Impact Depends on Density and Location

Age and Energy Use

Correlation of “Social Factors” with Greenhouse Gas Emissions

- Household size
- Education
- Income
- etc.

Health and Social Index and Gini Coefficient

Index of:
- Life expectancy
- Math & Literacy
- Infant mortality
- Homicides
- Imprisonment
- Teenage births
- Trust
- Obesity
- Mental illness – incl. drug & alcohol addiction
- Social mobility

Source: Wilkinson & Pickett, *The Spirit Level* (2009)
Gini Coefficient and State Environmental Stress Index

(p <= 0.05 significance level)

C. Linn Gould, “Income Inequality, Health, and Sustainability: How are they connected?” Sustainable Seattle: Driving Change and Getting Results, September 14th, 2005

So what?

- Clearly, demographic factors impact the magnitude of water and energy consumption, environmental degradation, as well as health and social problems.
- However, many demographic parameters are difficult to change with public policy.
- Are there some influence points?
Reviewed 17 indicators studies from Europe and North America

7 of 29 frequently used indicators relate directly to “sustainable”
- Adopted sustainable development policies
- Density of urban population
- Daily per capita water consumption
- Ecological footprint
- State of health of population
- Percent using mass transit
- Percent of space allocated to nature conservation

Source: Georges A. Tanguay, Measuring the Sustainability of Cities: A Survey-Based Analysis of the Use of Local Indicators, CIRANO, January 2009 ©
Water-Related Benefits of High Density (10 units/acre vs 3 units/acre), 2,300-Unit Residential Development:

- Reduced cost of infrastructure for water and sewer: 30-year total of $17,739,000
- Reduced water use: Annual reduction of 309 acre feet for a 30-year savings of $1,113,000
- Reduced runoff: Annual reduction of 66 acre feet

2035 San Antonio – Infill vs Current Trend

- **Current trend**
 - 2.1M annual hours of delay
 - $24M daily lost productivity
- **Infill**
 - 0.7M annual hours of delay
 - $8.6 daily lost productivity

Infill development will improve transportation system performance more than any transportation network investment!

Source: San Antonio - Bexar County Metropolitan Planning Organization
Generation and Baby Boomers:
Largest Market Segments Nationally, San Antonio

<table>
<thead>
<tr>
<th>Generation</th>
<th>Born</th>
<th>2010 Age</th>
<th>2010 Pop.</th>
<th>2010 % of Nation</th>
<th>S.A. MSA 2010 Pop.</th>
<th>2010 % of S.A. MSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisenhower</td>
<td>Before 1946</td>
<td>64+</td>
<td>41M</td>
<td>13%</td>
<td>220K</td>
<td>11%</td>
</tr>
<tr>
<td>Baby Boomers</td>
<td>1946 – 1964</td>
<td>45 – 64</td>
<td>80M</td>
<td>26%</td>
<td>470K</td>
<td>23%</td>
</tr>
<tr>
<td>Gen X</td>
<td>1965 – 1980</td>
<td>29 – 45</td>
<td>62M</td>
<td>20%</td>
<td>417K</td>
<td>21%</td>
</tr>
<tr>
<td>Gen Y (Millenials)</td>
<td>1981 – 1999</td>
<td>10 – 29</td>
<td>85M</td>
<td>27%</td>
<td>603K</td>
<td>30%</td>
</tr>
<tr>
<td>Gen Z (?)</td>
<td>2000 and After</td>
<td>0 – 10</td>
<td>42M</td>
<td>14%</td>
<td>322K</td>
<td>16%</td>
</tr>
</tbody>
</table>

Sources: RCLCO, using Claritas, and National Center for Health Statistics
GEN Y WILL PAY FOR WALKABLE, MIXED-USE
CHALLENGE IS PROVIDING PRODUCT THEY CAN AFFORD

- Driven by convenience, connectivity, and a healthy work-life balance to maintain relationships
- **1/3 will pay more** to walk to shops, work, and entertainment
- 2/3 say that living in a walkable community is important
- More than 1/2 of Gen Y would trade lot size for proximity to shopping or to work
- Even among families with children, one-third or more are willing to trade lot size and “ideal” homes for walkable, diverse communities

SOURCE: RCLCO Consumer Research
Demographic “Pressure Points”

<table>
<thead>
<tr>
<th>Factor</th>
<th>Impact</th>
<th>Regional Policy Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Household size</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Income</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Age</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Household life cycle</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Educational attainment</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Gender</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Density/sprawl</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Equity</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Lifestyle</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Conclusions

- Demographic analysis helps pinpoint opportunities for advancing sustainability
- Geographic scale is a factor
- Population density and distribution seem to be the parameters that appear to be important and can be impacted at the regional scale
- Education, equity and lifestyle are other areas with some promise
Disclaimer: The views presented in this paper are solely those of the author and are not necessarily those of the City of San Antonio.