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History History 

• Snow (1911)  regression for postcensal 
population estimates

• Crosetti and Smith (1954)  ratio-correlation 

• Schmitt and Grier (1966)  difference-
correlation

• Namboodiri and Lalu (1971)  average of 
simple regression models

• Swanson and Tedrow (1989)  rate-correlation

• Swanson and Beck (1994)  lagged ratio-
correlation
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BackgroundBackground

• Relate changes in symptomatic indicators to 
changes in population
• births, deaths, school enrollment, employment, 

registered  voters, tax returns, voter registration

• total population, population 65+

• Geographic Hierarchy
• Counties within states most common

• Any nested geographic system suitable

• Requires independent population estimate for 
higher level of geography
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Ratio-Correlation ModelRatio-Correlation Model

• Most widely used form of regression methods
Pi,t = a0 + ∑(bj)*Si,j,t + εi

Pi,t = (Pi,t / ∑ Pi,t) /(Pi,t-z / ∑ Pi,t-z)

Si,j,t = (Si,t / ∑ Si,t)j /(Si,t-z / ∑ Si,t-z)

• Ratio of shares (subarea to parent) between 
censuses

• Regression used to estimate ao and bj
coefficients

• Solve equation using (Si,t+k/∑ Si,t+k)j

• Combines synthetic and censal ratio 
techniques in a regression context
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Ratio-Correlation Model:
Washington State Counties

Ratio-Correlation Model:
Washington State Counties

            Pi,t  = 0.195 + (0.0933*Voters) + (0.3362*Autos) + (0.3980*Enroll) 
                   [p<.001]     [p= 0.14]                  [p < .001]              [p<.001] 
             
 
               where 
                             Pi,t = (Pi,2000/∑ Pi,2000) /(Pi,1990/∑ Pi,1990)                      

                      Si,1,t  = (Votersi,2000/∑ Votersi,2000) /(Votersi,1990/∑ Votersi,1990)     

                      Si,2,t  = (Autosi,2000/∑ Autosi,2000) /(Autosi,1990/∑ Autosi,1990)     

                      Si,3,t  = (Enrolli,2000/∑ Enrolli,2000) /(Enrolli,1990/∑ Enrolli,1990)     

                             R2 = 0.794 

                      adj R2 = 0.776 
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Ratio-Correlation Model ShortcomingsRatio-Correlation Model Shortcomings

• Inconsistency between calibration and 
postcensal estimate time periods

• Temporal instability of regression coefficients

• Multicollinearity

• Lag between symptomatic data and postcensal 
estimate dates

• Use of different symptomatic variables limits 
comparability of models and estimates

• Measurement error

• Spatial autocorrelation
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Alternatives to Ratio-Correlation ModelAlternatives to Ratio-Correlation Model

• Rate-Correlation model

• Difference-Correlation model

• Combining symptomatic indicators and sample 
surveys

• Ridge regression

• Averaging estimate from simple regression 
models
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Uncertainty in Population EstimatesUncertainty in Population Estimates

• Almost all information on estimate error based 
on retrospective or post-hoc analysis

• Post hoc analysis not provide information 
directly relevant for current estimates

• Postcensal estimates have error, but typically 
only a single number is presented

• Direct measures of error are useful
• Quickly see trustworthiness of estimates

• Users are entitled to this assessment; a single 
number gives a false sense of security 



9Applied Demography Conference. San Antonio, TX. January 10, 2012

Regression Models: Estimate UncertaintyRegression Models: Estimate Uncertainty

• Provide inferential tools to develop a direct 
quantification of uncertainty
• Measures sampling variability

• Measures lack of fit between estimate and 
population regression line

• Treat observations as coming from a super-
population

• Treat upper and lower limits (confidence band) 
as an interval estimate for a parameter
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66% Confidence Bands, 2010 Estimates:
Selected Counties in Washington State

66% Confidence Bands, 2010 Estimates:
Selected Counties in Washington State

Lower Limit Point Estimate Upper Limit 2010 Census Lower Upper
Adams 19,223 20,006 20,790 18,728 x
Chelan 71,078 74,172 77,265 72,453
Clark 429,504 445,660 461,816 425,363 x
Franklin 72,086 75,116 78,146 78,163 x
Garfield 2,191 2,304 2,418 2,266
Grant 89,121 92,596 96,071 89,120 x
King 1,886,466 1,966,293 2,046,121 1,931,249

% Outside
All Counties

Outside Interval

38%
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ConclusionsConclusions

• Regression methods have strong advantages 
for making population estimates

• Long history of successful use

• Alternative approaches are available to 
overcome limitations

• Future areas of research and application
• Spatial regression modeling

• Uncertainty based on regression modeling
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