On the Ratio-Correlation Method of Subnational Population Estimation

David A. Swanson University of California, Riverside

Jeff Tayman University of California, San Diego

History

- Snow (1911) regression for postcensal population estimates
- Crosetti and Smith (1954) ratio-correlation
- Schmitt and Grier (1966) differencecorrelation
- Namboodiri and Lalu (1971) average of simple regression models
- Swanson and Tedrow (1989) rate-correlation
- Swanson and Beck (1994) lagged ratiocorrelation

Background

- Relate changes in symptomatic indicators to changes in population
 - births, deaths, school enrollment, employment, registered voters, tax returns, voter registration
 - total population, population 65+
- Geographic Hierarchy
 - Counties within states most common
 - Any nested geographic system suitable
- Requires independent population estimate for higher level of geography

Ratio-Correlation Model

- Most widely used form of regression methods $P_{i,t} = a_0 + \sum (b_j)^* S_{i,j,t} + \varepsilon_i$ $P_{i,t} = (P_{i,t} / \sum P_{i,t}) / (P_{i,t-z} / \sum P_{i,t-z})$ $S_{i,j,t} = (S_{i,t} / \sum S_{i,t})_j / (S_{i,t-z} / \sum S_{i,t-z})$
- Ratio of shares (subarea to parent) between censuses
- Regression used to estimate a_o and b_j coefficients
- Solve equation using $(S_{i,t+k} / \sum S_{i,t+k})_j$
- Combines synthetic and censal ratio techniques in a regression context

Ratio-Correlation Model: Washington State Counties

 $P_{i,t} = 0.195 + (0.0933*Voters) + (0.3362*Autos) + (0.3980*Enroll)$ [p<.001] [p= 0.14] [p<.001] [p<.001]

where

$$P_{i,t} = (P_{i,2000} / \sum P_{i,2000}) / (P_{i,1990} / \sum P_{i,1990})$$

 $S_{i,1,t} = (Voters_{i,2000} / \sum Voters_{i,2000}) / (Voters_{i,1990} / \sum Voters_{i,1990})$

 $S_{i,2,t} = (Autos_{i,2000} / \sum Autos_{i,2000}) / (Autos_{i,1990} / \sum Autos_{i,1990})$

 $S_{i,3,t} = (Enroll_{i,2000} / \sum Enroll_{i,2000}) / (Enroll_{i,1990} / \sum Enroll_{i,1990})$

 $R^2 = 0.794$

 $adj R^2 = 0.776$

Ratio-Correlation Model Shortcomings

- Inconsistency between calibration and postcensal estimate time periods
- Temporal instability of regression coefficients
- Multicollinearity
- Lag between symptomatic data and postcensal estimate dates
- Use of different symptomatic variables limits comparability of models and estimates
- Measurement error
- Spatial autocorrelation

Alternatives to Ratio-Correlation Model

- Rate-Correlation model
- Difference-Correlation model
- Combining symptomatic indicators and sample surveys
- Ridge regression
- Averaging estimate from simple regression models

Uncertainty in Population Estimates

- Almost all information on estimate error based on retrospective or post-hoc analysis
- Post hoc analysis not provide information directly relevant for current estimates
- Postcensal estimates have error, but typically only a single number is presented
- Direct measures of error are useful
 - Quickly see trustworthiness of estimates
 - Users are entitled to this assessment; a single number gives a false sense of security

Regression Models: Estimate Uncertainty

 Provide inferential tools to develop a direct quantification of uncertainty

- Measures sampling variability
- Measures lack of fit between estimate and population regression line
- Treat observations as coming from a superpopulation
- Treat upper and lower limits (confidence band) as an interval estimate for a parameter

66% Confidence Bands, 2010 Estimates: Selected Counties in Washington State

				% Outside All Counties	389	38%	
King	1,886,466	1,966,293	2,046,121	1,931,249			
Grant	89,121	92,596	96,071	89,120	x		
Garfield	2,191	2,304	2,418	2,266			
Franklin	72,086	75,116	78,146	78,163		X	
Clark	429,504	445,660	461,816	425,363	X		
Chelan	71,078	74,172	77,265	72,453			
Adams	19,223	20,006	20,790	18,728	X		
	Lower Limit	Point Estimate	Upper Limit	2010 Census	Lower	Upper	
					Outside Interval		

Applied Demography Conference. San Antonio, TX. January 10, 2012

10

Conclusions

- Regression methods have strong advantages for making population estimates
- Long history of successful use
- Alternative approaches are available to overcome limitations
- Future areas of research and application
 - Spatial regression modeling
 - Uncertainty based on regression modeling

On the Ratio-Correlation Method of Subnational Population Estimation

David A. Swanson University of California, Riverside

Jeff Tayman University of California, San Diego