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Spatial Lag Model (SAR model) 

ερβ ++= WyXy
Model assumes large-scale spatial 
heterogeneity is handled by Xβ ; 

remaining small-scale (localized) spatial 
dependence is handled as an 

autoregressive, interactive, effect 
through Wy & ρ 
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Rearranging the terms in this model 
we obtain the reduced form: 

ερβρ
εβρ

εβρ
ερβ

11 )()(
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Not an easy model to explain in words 

Presenter
Presentation Notes
Inverse matrix is a  n x n  full matrix.
Commonly encountered matrix.  For example, in social network analysis, with W being a binary peer matrix, it is referred to as the Katz-Bonacich Centrality Matrix, and measures the number of direct & indirect connections that an individual in a social network has.
In network analysis, rho would be the “attenuation factor”.  We’ll call it the spatial parameter
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Fortunately… 
...)( 33221 WWWIWI ρρρρ +++=− −

So we can re-express our model… 
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and taking expected values… 

[ ] βρρ XWWIy ...ˆ 22 +++=

Presenter
Presentation Notes
Known as the Wassily Leontief power expansion.

But discovered much earlier by Prussian born mathematician Carl Gottfried Neumann

This is a “simultaneously specified Gaussian model” (SAR)
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Example: Counties in U.S. 
South,  2000 Census 

Source: 
SF3 Table P87 

n = 1,387 



Standard Linear Model 
(transformed variables) 
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For this model, we all know how to 
interpret the fixed marginal effects 

Presenter
Presentation Notes
Variables are transformed (PPOV, FEMHH, UNEM are square root transformations; HIED is log transformed)



But now… Spatial Lag Model (SAR) 
(transformed variables) 
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For this model, interpreting marginal 
effects is much more difficult 

avg. of “neighbor’s” child poverty rate 

I’ll return to this model at the end of my presentation 
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Why more difficult? 

recall expected values for SAR model… 

[ ] βρρ XWWIy ...ˆ 22 +++=

Spatial Spillovers & 
Spatial Feedbacks 

and what does this mean? 
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Illustration of “spatial spillover” on child poverty from a 
simulated increase in female-headed HH (with kids) only in 

Autauga Co. AL (SAR model with 1st-order queen W) 

Effect of arbitrary increase in 
FEMHH rate in Autauga Co. on 
Child Poverty Rate (SAR Model) 

Presenter
Presentation Notes
The FEMHH variable is the number of Fem-Headed HH with children (<18) divided by the total number of family HH with children (<18)
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The next several slides attempt 
to show (mathematically) 
what’s happening here 
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Back to the Standard 
Linear Model (SLM) 

iikkiii xxxy εββββ +++++= ...22110

εXβy +=In matrix notation: 

Q:  For the standard linear model, 
what (mathematically) do the beta 
coefficients represent? 
A:  They represent the partial 
derivatives of y with respect to xk .   

and a reminder:  ε ~ Niid(0,σ2I) 
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Think of it like this… 

In matrix notation: 
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nkk

k

k

nk

n

k

n

nkk
I

x
y

x
y

x
y

x
y

ββ
β

β
=
















=
















=





















∂
∂

∂
∂

∂
∂

∂
∂

1...0
.........
0...1

...0
.........
0...

...
.........

...

1

1

1

1

(n x n) (n x n) (n x n) 

one of these for each β coefficient; 
i.e., one for each xk 

iikkiii xxxy εββββ +++++= ...22110

εXβy +=
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That is… 

nkk

k

k

nk

n

k

n

nkk
I

x
y

x
y

x
y

x
y

ββ
β

β
=
















=
















=





















∂
∂

∂
∂

∂
∂

∂
∂

1...0
.........
0...1

...0
.........
0...

...
.........

...

1

1

1

1

ji
x
y

k
ik

j ==
∂
∂ for,β

ji
x
y

ik

j ≠=
∂
∂ for,0

cross-partial derivatives are zero;  change in 
xik affects only yi;  no spatial spillovers 

row 1: change in DV in region 1 based 
on change in xik each region (i = 1,…,n) 
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and… 
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xik affects only yi;  no spatial spillovers 

column 1: change in DV in 
each region i  (i = 1,…,n) 
based on change in x1k 
(i.e., xk in region 1) 
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Simple example… 

Region 1 Region 2 Region 3 

Assume: 
    3 regions; independent observations 
    Standard linear model (SLM) estimated by OLS 
    Dependent variable y ;  Independent variable x1 
    Slope coefficient for x1, β1 = 2 
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matrix for x1: 
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Simple example (continued)… 

Region 1 Region 2 Region 3 

Now, further assume that variable x1 in 
Region 3 changes by 10 units: 
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Only the value of y3 is affected by the 
change in x3;  no spatial spillovers 
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Again… things are more complex 
for SAR model (spatial spillovers!) 

εWyXβy ++= ρ
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Now the partial derivative 
matrix looks like this… 
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The n x n matrix (I-ρW)-1 has non-zero elements off the 
main diagonal.  These non-zero cross-partial derivatives 
imply the existence of spatial spillovers.  This follows from 
the power series approximation shown above:      

...)( 33221 ++++=− − WWWIWI ρρρρ
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With W row-standardized, the elements of W lie 
between 0 & 1.  Further, under positive spatial 

autocorrelation, ρ  is constrained to be strictly < |1|.  
Thus, the spatial spillovers associated with higher 

powers of ρ & W dampen out, often quickly. 

Again, assume: 
Region 1 Region 2 Region 3 

Further, assume the row-standardized W matrix: 
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For this particular weights matrix, we have (by simple 
matrix arithmetic): 
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Thus: 
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The n x n matrix of partial derivatives is a function of the 
exogenously specified weights matrix, W, the spatial scalar 
parameter, ρ , and the parameter βk.  But the β-term appears 
not only along the major diagonal but also in the cross-
partial derivatives.  When ρ = 0, the matrix of partial 
derivatives is the one we saw for the SLM.  When ρ ≠ 0, the 
partial derivatives (diagonal) are greater than the β-term, 
augmented by spatial spillovers as follows: 
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Diagonal terms of the partial derivatives 
matrix (for our 3-region example and the 
specified 1st-order weights matrix, W): 
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Again, when ρ = 0, the diagonal partial derivatives are 
simply the β-terms. When ρ ≠ 0, the diagonal elements 
represent the β-terms, augmented by spatial spillovers 
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Simple example revisited… 

Region 1 Region 2 Region 3 

Assume: 
    3 regions; independent observations 
    SAR model 
    Dependent variable y ;  Independent variable x1 
    Slope coefficient for x1, β1 = 2 

Partial 
derivatives 
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Simple example (continued) … 

Region 1 Region 2 Region 3 

Further, assume an increase by 10 
units the value of x1 in Region 3: 
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When ρ = 0, we obtain the earlier results for the SLM 
(i.e., increase of 10 units for variable x1 in Region 3 

results in y3 increasing by 20 units): 
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If, however, ρ = 0.2, then we see that an increase of 
10 units for variable x1 in Region 3 results in y 

increasing in all regions: 
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Can we describe this outcome? 
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y increases everywhere because of spatial spillovers.  The 
spillover effect is strongest for Region 2 (an immediate 
neighbor of Region 3 (which we might have anticipated 
because of the 1st-order spatial weights matrix, W).  But 

Region 1 is a “neighbor of the neighbor” and also is affected 
by the change in Region 3 for this SAR model. 

But why did y in Region 3 increase by more than 20?  The 
answer is feedback spillover.  A portion of the change in the 

other regions is feeding back to further change y3. 
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Calculate the extent of spatial 
spillover for this simple SAR model 
by subtracting the results for ρ = 0.0 

from the results for ρ = 0.2 
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SAR

The change in Region 3 spills over to affect Region 2 
and, much more mildly, even Region 1.  Since Region 3 is 
also a neighbor or Region 2, the same degree of spillover 

comes back to Region 3 as feedback spillover 



For the southeastern counties, 
and for the simple model & 

estimated parameters shown 
earlier (3 independent variables 

plus spatial lag)… 
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Employing the SAR model, we chose 
arbitrarily to increase the independent 

variable FEMHH in Autauga County AL by 
20 percentage points (from 19% to 39%) 

and inquired about the impact of this 
change on county-level poverty rates 



Change in child poverty rate due to simulated 
increase in FEMHH variable in Autauga Co. 
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Spatial spillovers due to change in child poverty 
rate due to simulated increase in FEMHH 

variable in Autauga Co. (direct effect removed) 
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Simulated spatial effects of change in 
child poverty rate due to increase in 

femhht variable in Autauga Co. 



Graph of spatial spillovers 
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1st-order neighbors 

2nd-order neighbors 3rd-order 
neighbors 



Comments… 
• Interpreting marginal effects in spatial 

regression models becomes complicated 
• They are influenced by effects direct & 

indirect (spatial spillovers & feedbacks) 
• They are a function of: 

– Our data and estimated parameters (βk & ρ) 
– Our assumed neighborhood definition and 

spatial weights matrix, W 
• An example such as shown here is helpful 

for understanding what’s going on in these 
models but requires some cautions 
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